
Microservice Powered Orchestration

Huabing Zhao ZTE, System Engineer, Network Management & Service, OPEN-O Common Service PTL
zhao.huabing@zte.com.cn
Zhaoxing Meng ZTE, NFV&SDN Architect, Network Management & Service, OPEN-O Common Service PTL
zhaoxing.meng1@zte.com.cn

Agenda

• Why Microservice at OPEN-O
• Challenges of Microservice
• MSB(Microservice Bus) Solution
• What can MSB bring to ONAP

2

Monolith vs Microservice

3

Monolith Microservices

Scaling Monolith Scaling Microservices

Process

Machine

The microservice architectural style is an
approach to developing a single application as a
suite of small services, each running in its own
process and communicating with lightweight
mechanisms, often an HTTP resource API.
 -Martin Fowler

No performance issue here

Title:
Type: Arial
Size：22-24pt
Color：The ZTE blue

Subtitle:
Type: Arial
Size：14-18pt
Color: The ZTE green

G143, B212

R140,G198, B62

R90,G203, B245

4

Why chose Microservice Architecture?

How to make orchestration reliable and scalable?
▪OPEN-O is a large, complex software system
▪Each component may have different resource requirement
▪Each component may have different working load

How to integrate existing seed codes in
different technical stack?
▪We didn’t start from scratch
▪A dozen of existing seed codes repos
▪Ambitious release plan

How to build an OPEN community?
▪We have various members and we are
expecting more joining in
▪Each organization has its own tech Stack

Title:
Type: Arial
Size：22-24pt
Color：The ZTE blue

Subtitle:
Type: Arial
Size：14-18pt
Color: The ZTE green

G143, B212

R140,G198, B62

R90,G203, B245

5

Ambitions Sun Release Plan

June
8,2016

Kick-Off

August
11,2016
Planning

Sept
1,2016

API Freeze

Sept 15,
2016

Code
Freeze

Sept
29,2016

RC0

Nov 3,
2016

Sun
Release

We had made an ambitions plan for SUN Release

Title:
Type: Arial
Size：22-24pt
Color：The ZTE blue

Subtitle:
Type: Arial
Size：14-18pt
Color: The ZTE green

G143, B212

R140,G198, B62

R90,G203, B245

6

SDN
Driver

VNFM
Drivers

VIM
Drivers

ACCESS/WAN SDN
Controller Drivers

NFV SDN
Controller Drivers

Orchestrator Service

Model Designer

Portal GUI Portal … Test
&
Lab
(for

feature)
GS-O

Service
Decomposer

Service
Lifecycle Mgr.

Service
Parser

Abstract NBI

SDN-O

SDN Res.
Mgr.

Abstract NBI

Abstract SBI

NFV-O

NFV Res. Mgr.

NFV Monitor

NS Lifecycle Mgr.

Abstract NBI

Abstract SBI

VPN

SDN Lifecycle Mgr.

Traffic
Optimize

VAS Mgr.

…

SDN
Monitor

O-Common
External System

Register

Template Mgr.

Analytics

Policy

Inventory

…

Common Service

HA

Log

Driver Mgr.

…

Micro-Service Bus

Protocol Stack

Auth.

EMS/NMS
Driver

Parser

NFV
Driver

Workflow Engine

Catalog

VIM
Drivers

Challenge of Integration
We get bigger challenge for ONAP
integration

7

Build an Open Community

Build an open community so that everyone can enjoy the party

 Microservice Platform

VendorOperator
Partner

Individual Developers

Portal

Global Service-O

Common
Service

Test
&
Lab

Orchestrato
r

Common

SDN-O NFV-O

Driver Driver Driver Driver Driver

Legacy System Partner App

SDN Controller VNFM VIM VNF

Challenges of Microservice Architecture

Microservice Architecture comes at a price: Complexity

How do the clients application access the back end services?

How do the client or another service - discover the location of a
service instance?

Direct Client-to-Microservice Communication？

❑ Add complexity to client codes
❑ Nightmare for firewall configuration
❑ Coupling of client and individual

services
❑ Cross-domain issue for web app

This approach has some
problems:

Solution: Service Gateway

Service gateway hides the complexity

❑Simplify the client codes.
❑Reduce request roundtrips
❑Provide API management
❑Solve cross-domain issue for

web app

How to find the service?
In order to access a service, you need to know
the exact endpoint(IP & Port)

IP & Port
dynamically

assigned

IP & Port
dynamically

changing
How to load

balancing

❑Service endpoint doesn’t change a lot
❑Consumer can get the endpoint from configuration

files

“Traditional” application

❑The IP & port is dynamically allocated
❑IP & port changes along with the scaling/ updating/

self-healing of service instances

Microservice application

Solution: Service Registration & Discovery

Service Registration:
➢ Service providers register themselves

to the registry when start up
➢ Update service information when

service instances change

Service Discovery：
➢ Service consumers query registry to

find the locations of service
➢ Two approaches: Server-side

discovery & Client-side discovery

Service
Registry

Service
Consumer

Load
Balancer

Service
Instance A

Service
Instance A

Service
Instance A

10.74.215.33:3564

10.74.215.211:1522

10.74.215.8:3281

Invoke

Load balance &
invoke

Query

Register

Server-side discovery

Service
Registry

Service
Consumer

Client
SDK

Service
Instance A

Service
Instance A

Service
Instance A

10.74.215.33:3564

10.74.215.211:1522

10.74.215.8:3281

Load balance &
invoke

Query

Register

Client-side discovery

OPEN-O Microservice Solution: High Level Architecture

 Access
Service

(Server-side
discovery)

Service
Provider
Instance

A

Service
Provider
Instance

B

Registration
Proxy

Service
Discovery
(DNS Server)

Service
Consumer

 Listen

 Register
Heartbeat
Unregister

Service
Gateway

L7
Service
Updater

Cache

 Listen to service change

Query
Service
Registry

Access Service
(Client-side discovery) access

service

Service
Consumer

L4
Service
Updater

 Update
Service
Registry Listen

to service
change

Modify
and Reload

 Load
Balance

 Access Service

DNS Search

Request Routing

Service Discovery

 Register

Service Discovery Client

OPEN-O Microservice Solution : MSB Components

Docker Listener

DockerProxy

Discovery
Client

Other Listeners

OtherProxy

Discovery
Client

register

Service Gateway

Service Discovery Server Cluster
Discovery

Server

Discovery
Server

Discovery
Server

Discovery
Client

Service
Management

Healthy
Check

forward registration request

forward registration request

Registration Proxy Service Discovery

Docker Cluster

OpenResty

L7 Service
Updater

L4 Service
Updater

Cache

Docker events

Service Gateway

query

External Systems

 3-party App

 UI Portal

Microservices

Service A

Service
request

forward service request

register

Healthy Check

update

Service A Service AService B Service AService B

Other Cluster(VM, Mesos, K8S, Swarm …)

Service AService A

Service lifecycle events

Service AService CService AService B
Client SDK

Service request

register
discovery

MSB Features-High Availability

15

Service B

Service C

Service D

Service E

Service A ❑Load balancer(DNS Server/LVS etc.) in the front
end

❑Service gateway cluster to avoid SPOF of service
gateway

Access Layer

❑Service gateway as the load balancer for
services

❑Deploy multiple service instances to avoid SPOF
of service

Service Layer

MSB Features-Separated gateway for External and Internal
Routing

16

Stricter access control
Protocol translation(eg. https->http)
… ❑Expose the services(Rest API, UI pages, etc.)which

need to be accessed by external systems
❑Solve the cross-domain issue for web app
❑Stricter access control
❑Adaption between external API and internal service

External service gateway

❑Routing and load balancing of the API calls within the
system

❑Less control in trusted zone
❑Light weight communication protocol

Internal API gateway
(router)

Registry

Can add more gateways according to
deployment scenarios

MSB Features-Extendability

• Extendable architecture for adding
functionality
� Auth: add auth to APIs, integrated with

Openstack keystone
� Driver routing: add driver specify routing logic

for devices
� Logging: API calling logging
� Service health monitoring
� ACL,API Analytics,Transformations
� Anything: new functionality can be added on

demand by plugins

17

M
SB

Authentication

API Monitoring

Logging

Other Plugin

MSB Features-Service API Portal

18

MSB Features-Service Healthy Monitoring

19

MSB Features-API Monitoring

20

How MSB may fit into ONAP (Service Discovery & Routing)

MSB

External
Service

gateway

Service
Discovery

Internal API Router

O
th

er
M

o
d

u
les …

V
F-C

Before:

……

How to call service:

After:
"apigateway": "https://apigateway.onap.org:80"

GET
https://apigateway.onap.org/api/aai/v8/cloud-infrastructure/clo
ud-regions/cloud-region/{cloud-owner}/{cloud-region-id}

API gateway routes the request to:
GET https://c1.vm1.aai.simpledemo.openecomp.org:8443/aai/v8
/cloud-infrastructure/cloud-regions/cloud-region/{cloud-owner}/{
cloud-region-id}

Using a configuration file, we might have
problems on scaling, failover and update

MSB handles the service
discovery & routing & LB

MSB as the single
entry point

How MSB may fit into ONAP(reverse proxy for web app)

Backend
Server

FronEnd
Server

Before:
❑The business logic(rest service) forwader must be

add to front end server
❑Solve the cross-domain issue cause coupling of

business logic and UI pages

Service Gateway

Backend
Server

FrontEnd
Server

Other
Services

After:
❑service gateway to solve cross-domain issue
❑Cache for static resources (page, picture)
❑Clearer boundary between UI and business logic

page

rest

s

Thank You

www.onap.org

http://www.open-o.org/

